ScienceAlert Homepage

Solar system mystery solved
Australian National University   
Tuesday, 17 April 2012
OrionNebulae_NASAESAM._RobbertoHubble_Space_Telescope_Orion_Treasury_Project_Team
A Hubble image of the Orion nebula, where thousands of stars are forming. Young stars are circled by protostellar desks, which eject jets of material. Chondrules may form in these jets.
Image: NASA, ESA, M. Robberto, Hubble Space Telescope Orion Treasury Project Team

New research from The Australian National University has answered a decades old cosmic conundrum on how ‘chondrules’ – tiny particles found within meteorites – could have formed in extreme heat, especially when the meteorite structure surrounding them remained cold.

Chondrules are spherical particles of molten material found in meteorites but their origins have long been a mystery. No longer than about 1mm in diameter, they melted at temperatures of more than 1,000 degrees Celsius, while the cooler materials surrounding them only experienced temperatures of a few hundred degrees Celsius.

ANU researchers Dr Raquel Salmeron from the Research School of Astronomy and Astrophysics, and Dr Trevor Ireland from the Research School of Earth Sciences, have proposed a new theory as to how chondrules formed in the early solar system.

“Most of the solar system is cold, so it’s been unclear for decades what caused the chondrules to experience such extreme heat. We believe that chondrules formed in jets of material ejected from flattened discs, called ‘protostellar discs’, which encircle young stars,” Dr Salmeron said.

“These discs are somewhat like the rings around the planet Saturn. The modern planets are the remnants of material of these discs clumping together. In observations of the formation of new stars, we can see jets of material accelerating out of protostellar discs.

“We show that as these jets shoot out of the discs, from about the Earth-Sun distance away, the materials brought with them are heated to the point of melting. The heavier items in them then drop back into the discs, where they cool and re-form.”

Dr Salmeron said that this theory challenged old assumptions about the formation of chondrules.

“For decades it has been assumed that jets could only form chondrules through the heating of materials in the vicinity of the Sun, followed by their transportation into protostellar discs,” Dr Salmeron said.

“We believe that our new theory explains how chondrules – among the earliest materials in the solar system – reached the temperatures required for melting, even though the early solar nebula was cold. It also explains the fairly uniform size of chondrules and provides a means for them to mix and combine with unheated material.”

Editor's Note: Original news release can be found here.
 

Featured Video

hidden image hidden image hidden image hidden image